$$
\begin{aligned}
& \begin{aligned}
\Sigma \vec{F} & =\frac{\Delta(m \vec{v})}{\Delta t}=m \frac{\Delta \vec{v}}{\Delta t} \quad \vec{a}_{a v}=\frac{\Delta \vec{v}}{\Delta t}=\frac{\vec{a}_{a v}\left(\mathrm{~m} / \mathrm{s}^{2}\right)}{t_{2}-v_{1}} \\
W & =m g
\end{aligned} \\
& \xrightarrow[\sim]{\sim}
\end{aligned}
$$

FORCE AND NEWTON'S LAWS

Understand the vector definition of force.
Use trigonometric identities to resolve forces into components. Define net force, external force, and system.
Define normal, tension, weight and friction forces.
Understand Newton's first law of motion. Understand Newton's second law of motion.
Apply Newton's second law to determine acceleration Understand Newton's third law of motion.
Learning Outcomes

Distinguish between the internal and external forces for a system Apply Newton's third law to solve problems of motion.
Apply Newton's laws of motion to solve problems involving a variety of forces.
Discuss the general characteristics of friction.
Describe the various types of friction.
Calculate the magnitude of static and kinetic friction.
State Hooke's law and explain using a graphical representation.
Discuss the three types of deformations such as changes in length, sideways shear and changes in volume.
Describe with examples the young's modulus, shear modulus and bulk modulus.
$F=$ Force in magnitude
F = Force as a vector
a = Acceleration in magnitude
a =Acceleration as a vector
$\mathrm{m}=$ mass
$\mu \mathrm{K}=$ Coefficient of kinetic

Concepts

friction
$\mu s=$ Coefficient of static
friction
TYPE OF FORCES
W= Weight
Fn= Normal force
T = Tension
$\mathrm{fk}=$ Kinetic friction
$\mathrm{fs}=$ Static friction
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{a}_{\mathrm{x}}=$ acceleration in x
$a_{y}=$ acceleration in y
$\mathrm{Fx}=\mathrm{x}$ component of the Force
$F y=y$-component of the
Force
Fnet = Net force as vector
Fnet = Magnitude of Fnet
$\Sigma=$ Sum
$\mathrm{F}_{12}=$ Force on object 1 due to object 2

Units

SI UNITS

acceleration is in meters per second square " $\mathrm{m} / \mathrm{s}^{2}$ "
Force in Newton's" ${ }^{\prime \prime}$ "
mass is in kg
Angle in degrees or radians

```
W= mg
Fnet=ma
Fnet=ma
\sumFx=FNet (x)
\sumFy=FNet (y)
F}=\mp@subsup{F}{x}{2}+F\mp@subsup{y}{}{2
tan}0=Fy/F
0=atan(Fy/Fx)
Fnet }\mp@subsup{}{}{2}=\textrm{F}\mp@subsup{1}{}{2}+\mp@subsup{\textrm{F}}{}{2}+2\textrm{F}1\textrm{F}2\operatorname{cos}
cosine theorem for two forces, }0\mathrm{ is the angle between F1 and F2
Conditions for an object in Equilibrium \sumFx=0 and \sumFy=0
F12 = - F21 Action-Reaction
Fexternal = mtotal a
F=-k \Deltax Hooke's Law
fk= }\mu\textrm{KFn
fs(max)=\musFn
0\leq fs\leq fs(max)
FD=1/2 C\rho Av2 Drag force, C\rho is a constant depending of shape, A
is the area.
```


VECTOR REPRESENTATIONS OF FORCES

Graphical Magnitude/Angle
3 units at 45 degrees

Components
$\mathrm{Fx}=3 \cos 45=2.1$ units
$F y=3 \sin 45=2.1$ units

Vector Representation

$$
F=2.1 \mathbf{i}+2.1 \mathbf{j}
$$

QUADRANTS AND DIRECTIONS
First quadrant Fx is + ,Fy is + , second quadrant Fx is - , Fy is third quadrant Fx and Fy are -, fourth quadrant Fx is $+F y$ is -

CLASS WORK VECTOR REPRESENTATION OF FORCE

```
Fx =F cos(0) only when the angle is measured with respect to x-axis
Fy=F\operatorname{sin}(0)\quadonly when the angle is measured with respect to }x\mathrm{ -axis
F=|F|=sqrt(Fx'2 + Fy2) Pythagorean Theorem
tan}0=Fy/F
0=tan-1(Fy/Fx) or }0=\operatorname{tan}-1(\textrm{Fy}/\textrm{Fx})+\pi\mathrm{ based on quadrant
F=Fxi+Fyj
```

1) x-component of force is $F 1 x=-4 N$ and y component is F1y=-3 N. Write the velocity as vector representation, in magnitude/angle form, and show it graphically

F1
2) A F2=4.0 N is making 45 degrees with the x-axis. Find F2x,F2y. Show the vector

3) Both forces are applied to an object. Find Fnet(x), Fnet(y) and $|\mathbf{F}|$ by adding the components of each vector

CLASSWORK ON FORCE EQUILIBRIUM

Three forces are acting on an object in equilibrium. Find the missing force F3. Draw the free body diagram and give the answer in the same representation as F1 and F2.

F1(N)		F2(N)		F3(N	Fnet (N)	
$F 1 x=3.2$	$F 1 y=4.5$	$F 2 x=-3.6$	$F 2 \mathrm{y}=2.5$		Fnetx=0	Fnety=0
F1x $=5$	$F 1 y=12$	$F 2 x=-5$	$F 2 \mathrm{y}=-5$		Fnetx=0	Fnety=0
$F 1=4 N$	$\theta=30$ degrees	$F 2=4 \mathrm{~N}$	$\theta=-30$ degrees		Fnetx=0	Fnety=0
$F 1=5 \mathrm{~N}$	$\theta=90$ degrees	$\mathrm{F} 2=12 \mathrm{~N}$	$\theta=0$ degrees		Fnetx=0	Fnety=0
$\mathbf{F 1}=3.7 \mathbf{i}-2.6 \mathbf{j}$		$\mathbf{F 2}=4.3 \mathbf{i}+2.8 \mathbf{j}$			Fnetx=0	Fnety=0
F1 is 2.0 units upward or it is 2.0 units North		F2 is 2.0 units to the left or F2 is 2.0 units East			Fnetx=0	Fnety=0

TYPES OF FORCES, THEIR MAGNITUDES AND DIRECTIONS

$\mathrm{W}=$ Weight of force of gravity. Direction is always downward. Magnitude is always mg .
$\mathrm{Fn}=$ Normal force. Direction is always perpendicular to the surface. (Magnitude is not always mg)
$\mathrm{T}=$ Tension. Direction is always along the string/cable direction. Tension can be given or solved for.
$\mathrm{fs}=$ static friction opposes potential motion direction. Magnitude varies $0 \leq \mathrm{fs} \leq \mathrm{fs}(\max) \mathrm{fs}(\mathrm{max})=\mu \mathrm{f} \mathrm{Fn}$
$\mathrm{fk}=$ usually opposite to the direction of motion. For a system of many objects, it could be in the direction of motion

F(external)= Could be in any direction at any magnitude

KEY STRATEGY:FREE BODY DIAGRAMS

Draw the free body diagram.
Show forces with arrows
Extract values from the word problem
Find the components of each vector
For equilibrium set Fnetx $=0$ and Fnety=0
For acceleration problems, use Fnet $=\mathrm{m}$ a
Solve for the unknown force

For the inclined plane problems only, you may need to change the coordinate system. Inclined plane problems are solved much easier by taking a diagonal coordinate frame

CLASSWORK EQUILIBRIUM

1) A block with 42 N weight is balanced using a string on an inclined plane. The angle at the bottom is 40 degrees. Write the equilibrium conditions and solve for the Normal force Fn and the tension T.

2) A 60 kg skier is moving down on an inclined plane with constant velocity. Inclined plane makes an angle of 25 degrees with the horizontal. a) Find the normal force Fn and the force of friction fk. What is the $\mu \mathrm{s}$

3) A block $\mathrm{M} 1=2.0 \mathrm{~kg}$, hanging from the ceiling is attached to a second block with mass $\mathrm{M} 2=7.0 \mathrm{~kg}$. Calculate the tension at each string.

4) A block of mass 0.40 kg is attached to the wire connected to the wall making an angle of 90 degrees with it. It is also attached to the ceiling with the wire making an angle of 53 degrees with the horizontal. Calculate tensions at each wire. Take $\sin (53)=0.8$ and $\cos (53)=0.6$

CLASSWORK ON ACCELERATION

Q1) A 100 kg model rocket is accelerated upward with a 2000 N force applied by its fuel. A few minutes after the launch, there is also 300 N air drag. Find the acceleration of the rocket at that moment. Using drag coefficient as 0.75 and surface area of $2 \mathrm{~m}^{2}$, calculate its speed.

Q2) A 5.0 kg wood block is on ice being pulled by two equal forces of 20 Newtons applied at the same point. The angle between the forces is 120 degrees. Find the acceleration of the block, neglect friction.

Q3) A 10kg load is pulled diagonally with an unknown external force making 60 degrees with the x-axis against 30 N friction force. The pull causes the load to accelerate with $2 \mathrm{~m} / \mathrm{s}^{2}$. What is the external force? What is the coefficient of friction?

Q4) A 60 kg person is in an elevator. A) Calculate the apparent weight of the person (Normal force) when an elevator is going down with acceleration of $3.0 \mathrm{~m} / \mathrm{s}^{2}$. B) Calculate the apparent weight of the person (Normal force) when an elevator is going up with an acceleration of $3.0 \mathrm{~m} / \mathrm{s}^{2}$.

ACTIVITY FRICTION FORCE

Open https://phet.colorado.edu/en/simulations/forces-and-motion-basics Choose friction. Click on masses and speed. Set the friction at mid-level. Adjust the external force until you get a constant speed. Using the formula $\mathrm{f}_{\mathrm{k}}=\mu_{\mathrm{k}} \mathrm{mg}$ calculate the friction coefficient. Double the mass and repeat for the same friction constant. You should get about the same value. Change the friction level and repeat Come up with your own numbers and repeat for various masses/friction level

Friction level	Mass (kg)	Fapplied $(\mathbf{N})=\mathrm{f}_{\mathrm{k}}$	μ_{K}
mid	50		
mid	100		
low	50		
low	100		
high	40		
high	80		

KEY STRATEGIES FOR NEWTON'S THIRD LAW

Newton's third law problems are multiple object problems. Multiple objects forms a system.
For each problem, first draw the free body diagram
Find the driving force and resistant force (if there is any)
Ignore the internal forces first, treat the problem as a system problem
Fnet $=\mathrm{F}$ (driving) -F (resisting)
First use Fnet=(mtotal a) and solve for the acceleration
Later use free body diagram of one of the objects, substitute for "a" and find the internal force.

Free-body diagram 1

Free-body diagram 2

CLASSWORK NEWTON'S THIRD LAW

Q1) Two boxes are connected with a string and placed on a frictionless surface. The masses of the boxes are $m_{1}=3 \mathrm{~kg}$ and $m_{2}=7 \mathrm{~kg}$ respectively. The 7 kg box is being pulled by a force of 24 N causing the system to
 accelerate. Find the acceleration of each box. Find the tension

Q2) Two masses $m_{1=} 0.30 \mathrm{~kg}$ and $\mathrm{m}_{2}=0.40 \mathrm{~kg}$ are connected by a light string that passes over the frictionless and massless pulley forming an Atwood's machine. The weight of $m 2$ is the driving force and the weight of $m 1$ is the resistant force. Find the acceleration of the system and the tension.

Q3) Two blocks are in contact on a frictionless horizontal surface. The blocks are accelerated by a single horizontal force applied to m 1 . Where, $\mathrm{F}=15.6$ $\mathrm{N}, \mathrm{m} 1=6.0 \mathrm{~kg}$, and $\mathrm{m} 2=2.0 \mathrm{~kg}$. Find the acceleration of the system and fi the contact force C. B) Find the acceleration if $\mu \mathrm{k}=0.1$

ELASTICITY

Using the table, calculate the deformation of the following under $100,000 \mathrm{~N} / \mathrm{m}^{2}$ stress.

1) Find the change in volume for an Aluminum cube with sides 2 meters long
2) Find the change in length for a 0.2 meters long brass
3) Find the deformation of a steel cube with length 0.4 meters under shearing force
4) Choose a new material using the table and recalculate for 1-2-3.

Stress=Modulus * |Strain| Strain=Deformation/Original

(a)
(b)

HOOKE'S LAW ACTIVITY

Activity 1) Open https://phet.colorado.edu/sims/html/masses-and-springs/latest/masses-and-springs en.html
Click on lab. Choose mass equilibrium.
Don't change gravity but put some damping (it is like friction)
Drag the ruler tool, measure the length of the spring without mass on it.
Attach masses based on the table below and measure the new
length calculate change in length and using $|F|=k(L-L o)$ find the coefficient k $\mathrm{F}=\mathrm{mg}$ however mass is in grams so convert it to kg . L at zero mass is your Lo. You will use it to find change in length. " k " can't be calculated at that value.

$M(k g)$	$F(N)$	L(m)	L-Lo (m)	k
0	0			
0.050				
0.100				
0.150				

Activity 2) Attach one of the mysterious objects. Using the " k " value calculate their masses.

REFERENCES

- Open Stax
- Adobe stock photo
- PhET

